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Abstract 

Cooperation among multiple countries is essential for the effective establishment of common 

environmental projects, such as the eradication of invasive species and diseases and the development of 

green technologies. However, each country has the incentive to contribute less to the project and free-

ride on the contribution of other countries. Therefore, a major question is how the contributions could be 

allocated among the countries, such that no country would have the incentive to reduce its contribution. 

Here we use a dynamic game model and consider a Markovian Nash equilibrium as a possible allocation 

of contributions. We prove that under general conditions, in each Nash equilibrium, among the countries 

that contribute, those that have smaller benefits from the project contribute more. Moreover, there are 

multiple Nash equilibria, where those Nash equilibria in which fewer countries contribute are more 

efficient and result in a faster establishment of the project. These results imply that an inherent tradeoff 

exists among fairness, efficiency, and stability when establishing a common project. 
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Introduction 

Achieving a common environmental goal necessitates the prolonged cooperation of multiple countries. 

Climate change mitigation, for instance, necessitates a global endeavor to reduce the emissions of 

greenhouse gases (GHGs) [1-3], and the management of invasive species and diseases necessitates 

cooperation among multiple countries because the proliferation of these threats in some countries may 

lead to their outbreak in other countries [4-11]. Nevertheless, the benefits from these actions are often 

public goods, and their benefits are shared among all countries. Specifically, investments to reduce GHG 

emissions and control harmful species are under-provided because each country cares mainly for its own 
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damages from the threat and cares less about the damages to other countries [12, 13]. In turn, there is 

no simple mechanism to enforce an international agreement. A major focus in the literature, including 

this paper, is on self-enforcing agreements, in which the contribution/investment of each country to the 

public project is voluntary  [13, 14]: Each country that keeps its contribution does so for its own benefit, 

and a country that has fewer incentives can opt-out without getting punished. A major question is, 

therefore, how the contributions could be allocated among the countries over time, and how our society 

can achieve better outcomes from a global perspective.  

One possible solution is that each country will control the harmful species or the GHG emissions that 

originate from its own area, but this solution might fail for several reasons. First, the research and 

development of new technologies, such as a new green technology that enables production with less 

emissions [15-17], or a new vaccine [18], is inherently global and is used by all the countries; therefore, it 

is unclear how the contributions should be allocated in these cases. Second, countries that are poorer or 

that suffer fewer damages from the environmental threat may decide not to contribute their part, which, 

in turn, imposes damages on the other countries. For example, a given country may decide not to treat 

an invasive species or a disease in its area, which may lead to its invasions in other countries and impose 

damages globally (e.g., the weakest-link problem) [5, 7]. In such a case, other countries may need to 

combine efforts to treat the harmful species from that country [5, 19]. 

In this paper, we focus on the establishment of a given environmental project, which could be the 

development of new green technology (Fig. 1), the development of a vaccine, or the eradication of a 

particular invasive species or disease from a focal area where its outbreak has occurred. We focus on 

voluntary contributions, where countries that do not contribute are not being punished. We assume that 

all the countries might benefit from the project, but some countries benefit more than others. For 

example, a green technology may benefit more those countries that suffer higher costs due to climate 

damages. In turn, climate damages vary among countries  [20-22] and may depend on a country’s (i) 

current temperatures (a cold country may have a lower cost due to climate change), (ii) size (a larger 

country with a larger economy may have a higher total cost), (iii) wealth (a wealthier country may assign 

higher a dollar value to the same product and thereby have a higher cost), and (iv) type of production (a 

country that relies more heavily on agriculture may have a higher cost). Therefore, a major question is 

how the benefits of a given country from the project affect its contribution in a self-enforcing agreement 

[23].  
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Although the dynamic contribution of public goods has been extensively studied [13-18, 24-26], we show 

here that a fundamental property of these games has been overlooked. Specifically, we show that positive 

feedback exists between the relative contribution of a given country and the incentives of that country to 

contribute further. Specifically, if a given country already contributes more than other countries, then this 

country would be more incentivized to make an even greater contribution. As an example, consider a 

project that could become complete within 10 years if a total investment of $100𝑀𝑀 ($10𝑀𝑀 per year) is 

made, or within 5 years if a total investment of $120𝑀𝑀 ($24𝑀𝑀 per year) is made. (A greater investment is 

often needed to complete the project faster due to diminishing returns, e.g., it is commonly more cost-

effective to eradicate a harmful species slowly [11, 27]). Consider the strategy in which country 1 

contributes $10𝑀𝑀 per year and country 2 does not contribute, and consequently, the project becomes 

complete after 10 years. Then, if country 1 considers deviating to complete the project within 5 years 

instead of 10 years, it only needs to add $20𝑀𝑀 in total to accelerate the progress. On the other hand, if 

country 2 would like to deviate to accelerate the progress, it needs to increase its annual contribution 

from $0 to $14𝑀𝑀 over a period of 5 years, namely, to add $70𝑀𝑀 in total. Therefore, the country that 

already contributes is more incentivized to deviate and increase its contribution because it needs to add 

less money to accelerate the progress. 

In turn, we show in this paper that this positive feedback leads to the existence of multiple Nash equilibria, 

each of which is characterized by a given set of countries that contribute at a given stage of the project 

while the other countries do not contribute at that stage. In particular, each of these Nash equilibria is 

characterized by an unfair allocation of contributions even among those countries that do contribute: at 

each stage of the project, the countries that have higher benefits from the remaining project contribute 

less than the other countries that contribute. Furthermore, we show that the allocations of contributions 

that are less fair (in which fewer countries contribute) are also the more efficient ones. Therefore, no 

single equilibrium allocation is clearly better than the others. Nevertheless, we also show that the identity 

of the countries that contribute may change over time (or at different stages of the project), and we show 

that this suggests a possible solution by letting different countries contribute during distinct time periods.  

Model 

We consider 𝑁𝑁 countries, where each country, i, decides how much to contribute over time, 𝑎𝑎𝑖𝑖(𝑡𝑡), to the 

establishment of a common environmental project, where the stage of the project is given by 𝐺𝐺(𝑡𝑡) (Fig. 

1). For example, 𝐺𝐺(𝑡𝑡) may characterize (i) the stage of development or implementation of a given green 
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technology or (ii) the stage of a certain eradication project (a higher 𝐺𝐺 implies a lower density of the 

harmful species). In turn, 𝐺𝐺(𝑡𝑡) increases over time at a rate that increases with the aggregate contribution 

of all countries:  

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= ℎ(𝐺𝐺,𝐴𝐴) ,                                                                                                                                   (1) 

where 

𝐴𝐴(𝑡𝑡) = �𝑎𝑎𝑖𝑖
𝑖𝑖

                                                                                                                                        (2)     

is the instantaneous aggregate contribution of all countries at time t, and ℎ is the speed at which the 

project is being developed, which is positive and increasing with 𝐴𝐴(𝑡𝑡). The project may also be subject to 

diminishing returns (𝜕𝜕2ℎ/𝜕𝜕𝐴𝐴2 < 0) if a large contribution at a given time is less effective than spreading 

the same contribution over a longer period. 

The objective of each country, 𝑖𝑖, is to maximize its net present value, 𝑉𝑉𝑖𝑖, that incorporates the benefit of 

the country from the public good and the costs due to its own contributions over time: 

𝒱𝒱𝑖𝑖 = � [𝐵𝐵𝑖𝑖(𝐺𝐺) − 𝑎𝑎𝑖𝑖]𝑒𝑒−𝛿𝛿𝛿𝛿𝑑𝑑𝑑𝑑
∞

0
,                                                                                                          (3) 

where 𝐵𝐵𝑖𝑖  is the annual benefit to country 𝑖𝑖 from the project, and 𝛿𝛿 > 0 is the discount rate. Note that the 

benefits, 𝐵𝐵𝑖𝑖, may vary among countries. 𝐵𝐵𝑖𝑖  increases with G and approaches its maximum when the 

project is established (𝐺𝐺 = 𝐺𝐺max). Depending on the specific project, 𝐵𝐵𝑖𝑖  may increase gradually with 𝐺𝐺, or 

it may have a sharp increase if the project becomes beneficial only after a certain “breakthrough” has 

occurred [23].  

In turn, we consider a dynamic game in which each country chooses a strategy that dictates how much it 

contributes as a function of the state of the system (Markovian strategy) [13, 26]. Consequently, we seek 

to find the Markovian Nash equilibria, in which, if each country adopts its equilibrium strategy, 𝑎𝑎𝑖𝑖∗(𝐺𝐺), 

then no country can benefit by unilaterally deviating (for all 𝑖𝑖,𝑎𝑎𝑖𝑖∗ maximizes 𝑉𝑉𝑖𝑖 if 𝑎𝑎𝑗𝑗 = 𝑎𝑎𝑗𝑗∗ for all 𝑗𝑗 ≠ 𝑖𝑖). 

(Note that, if the integral in Eq. (3) diverges for all strategies, such as may occur if 𝛿𝛿 = 0, then the Nash 

equilibrium is defined as a set of strategies such that for any, 𝑎𝑎𝑖𝑖′ ≠ 𝑎𝑎𝑖𝑖∗, there exists a sufficiently large T 

such that 𝑉𝑉𝑖𝑖(𝑎𝑎𝑖𝑖∗) > 𝑉𝑉𝑖𝑖(𝑎𝑎𝑖𝑖′), where the integration is to T instead ∞ [26].) 

Methods 
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Consider a Nash equilibrium, 𝒂𝒂∗, and denote 𝐺𝐺max∗  as the asymptotic value of 𝐺𝐺 given that this Nash 

equilibrium is adopted by all countries. (Note that 𝐺𝐺max∗  could equal 𝐺𝐺max, but more generally, countries 

might establish only a part of the project, and therefore, 𝐺𝐺max∗ ≤ 𝐺𝐺max; also note that 𝐺𝐺 may approach 

𝐺𝐺max∗  within a finite time, or it may approach it asymptotically.) Consider an initial state 𝐺𝐺0 < 𝐺𝐺max∗ . Since 

we consider Markovian strategies that depend only on the state 𝐺𝐺, this implies that 𝐺𝐺 increases 

monotonically from 𝐺𝐺0 to 𝐺𝐺max∗ . In turn, the idea behind our analysis is that each country aims to minimize 

its net cost during the time until 𝐺𝐺 approaches  𝐺𝐺max∗ , where this net cost includes both the cost of the 

country’s investment and the cost due to the lost benefits. Specifically the annual cost due to the fact that 

the project is incomplete and is still in a state 𝐺𝐺 < 𝐺𝐺max∗  is given by  

𝐶𝐶𝑖𝑖(𝐺𝐺) = 𝐵𝐵𝑖𝑖(𝐺𝐺max∗ )− 𝐵𝐵𝑖𝑖(𝐺𝐺) .                                                                                                                  (4) 

In turn, increasing the contribution 𝑎𝑎𝑖𝑖  results in a greater annual cost to country 𝑖𝑖, but it also accelerates 

the rate at which G increases. 

The theoretical analysis of the model is given in Appendices A-D. In Appendix A we show that, in each 

state of the system, the Nash equilibrium of the game is also a Nash equilibrium of a particular static game 

in which each player aims to minimize her/his cost until the system approaches the next state. In turn, in 

Appendices B and C, we further analyze the system and we prove the main results, Theorems 1 and 2. In 

Appendix D, we derive the conditions for the existence of certain Nash equilibria. In turn, the theoretical 

analysis is accompanied by a numerical analysis that demonstrate the main results (Figs. 2-5). The 

algorithm includes background induction [11, 26, 28, 29] and an algorithm that we developed to find the 

Nash equilibria in a given state, as described in Appendix E. 

Results 

Among the countries that contribute, the less incentivized countries contribute more 

Our first result shows that, if 𝛿𝛿 is sufficiently small, then in any given state of the system among the 

countries that contribute in that state (country i “contributes” if 𝑎𝑎𝑖𝑖 > 0), the countries that contribute 

more are those that gain lower benefits from establishing the project (Figs. 2,3). Furthermore, if a given 

set of countries contribute until the project is complete, then among those countries, the countries that 

have the lower benefits contribute more (regardless of the value of 𝛿𝛿). The result is stated formally in the 

following theorem (see proof in Appendix B). 
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Theorem 1. Consider the N-players dynamic game in which each player adopts a Markovian strategy, 

𝑎𝑎𝑖𝑖(𝐺𝐺) ≥ 0 (𝑖𝑖 = 1,2, … ,𝑁𝑁), where the utility of player i, 𝒱𝒱𝑖𝑖 is given by Eq. 3 and the dynamics of 𝐺𝐺 are given 

by Eqs. 1, 2. Assume that ℎ is monotone increasing with 𝐴𝐴 and that, for all i, 𝐵𝐵𝑖𝑖  increases with 𝐺𝐺 and is 

bounded from above. Consider Markovian Nash equilibrium and denote 𝑎𝑎𝑖𝑖∗(𝐺𝐺) as the strategy of player 𝑖𝑖 

at state 𝐺𝐺 and 𝐺𝐺max∗  as the asymptotic value of G following that equilibrium. The following two statements 

must hold: 

A. There exists 𝛿𝛿𝑐𝑐 > 0 such that, if 𝛿𝛿 < 𝛿𝛿𝑐𝑐 , the following holds for all 𝐺𝐺0 < 𝐺𝐺max∗  and all i and j: If 

𝐶𝐶𝑖𝑖(𝐺𝐺0) > 𝐶𝐶𝑗𝑗(𝐺𝐺0) and 𝑎𝑎𝑗𝑗(𝐺𝐺0) > 0, then 𝑎𝑎𝑖𝑖∗(𝐺𝐺0) < 𝑎𝑎𝑗𝑗∗(𝐺𝐺0), where 𝐶𝐶𝑖𝑖 is given by Eq. 4. 

B. Consider two players, 𝑖𝑖 and 𝑗𝑗, that contribute simultaneously (𝑎𝑎𝑖𝑖∗(𝐺𝐺) > 0 and 𝑎𝑎𝑗𝑗∗(𝐺𝐺) > 0) for all 

𝐺𝐺 < 𝐺𝐺max∗ . It follows that, for all 𝐺𝐺0 < 𝐺𝐺max∗ , 𝑎𝑎𝑖𝑖∗(𝐺𝐺0) < 𝑎𝑎𝑗𝑗∗(𝐺𝐺0) if and only if 𝐶𝐶𝑖𝑖(𝐺𝐺0) > 𝐶𝐶𝑗𝑗(𝐺𝐺0). 

End of Theorem 1 

Multiple Nash equilibria coexist  

Our results also show that multiple Nash equilibria may coexist, where the entire contribution in each 

equilibrium is made by a certain set of countries. To begin with, consider the cases in which the same 

countries contribute simultaneously at all times (or until G approaches its maximum). Even then, there 

exists multiple Nash equilibria, each of which comprises a different set of countries that contribute (Figs. 

2, 3A, 3B). For example, our numerical results show that a Nash equilibrium in which the four most 

incentivized countries contribute (Fig. 2A) may coexist (same parameter values) with a Nash equilibrium 

in which only two or three of these countries contribute (Fig. 2B,C) and, similarly, a Nash equilibrium in 

which the nine most incentivized countries contribute (Fig. 2D) may coexist with Nash equilibria where 

fewer countries contribute (Fig. 2E,F). Also, there are multiple Nash equilibria in which only two or three 

countries contribute, but the identity of the countries that contribute vary from one equilibrium to 

another.  

Nevertheless, the existence of a Nash equilibrium in which a particular set of countries contribute 

simultaneously depends on the discount rate as well as on the relative costs of these countries (Figs. 3,4, 

Appendix D). In particular, if 𝛿𝛿 is sufficiently small, it worth for a single country to contribute alone. Bus if 

𝛿𝛿 is greater than a certain threshold, there exists a Nash equilibrium in which no country contributes, and 

the other Nash equilibria dictate the contribution of several countries (Fig. 5). Similarly, the larger the 

value of 𝛿𝛿, the larger the number of countries that have to contribute in a Nash equilibrium (and solutions 

in which fewer countries contribute may become unstable) (Fig. 5, and see also [11, 19]). Also, a country 
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cannot contribute if its benefits from the project are much lower than those of the most incentivized 

country (Fig. 4B, Appendix D). For example, in the special case where h is linear and 𝛿𝛿 = 0, we show in 

Appendix D that, for any state, 𝐺𝐺0, a given set of 𝑛𝑛 ≥ 2 countries could be those that contribute in Nash 

equilibrium if and only if 𝐶𝐶1 ≤ (𝑛𝑛 − 1)〈𝐶𝐶〉/𝑛𝑛, where 𝐶𝐶1 is the largest cost and 〈𝐶𝐶〉 is the average cost of 

the countries that contribute at 𝐺𝐺 = 𝐺𝐺0. If this condition is satisfied, then, in the Nash equilibrium, where 

𝐺𝐺 = 𝐺𝐺0, 𝒂𝒂� = ((1/(𝑛𝑛 − 1))Λ − 𝐼𝐼)𝑪𝑪�, where 𝒂𝒂� is the vector of the strategies of the countries that 

contribute, 𝑪𝑪� is the vector of their costs, Λ is the all-ones 𝑛𝑛 × 𝑛𝑛 matrix, and 𝐼𝐼 is the 𝑛𝑛 × 𝑛𝑛 identity matrix.  

Furthermore, in addition to all the Nash equilibria in which the same countries contribute at all times, 

there exist iterative Nash equilibria in which different countries contribute at different times (Fig. 3). 

Specifically, these equilibria differ in the timing at which the different countries start, pause and resume 

their contributions (Fig. 3A). For example, there exists a Nash equilibrium in which countries 2 and 4 

contribute until the technology is partially developed, e.g., 𝐺𝐺 = 0.7𝐺𝐺max, and countries 1, 3 and 5 

contribute thereafter, until the technology is fully developed, 𝐺𝐺 = 𝐺𝐺max (Fig. 3C). This iterative solution 

coexists with the solutions in which the same countries contribute simultaneously at all times (Fig. 3A, B). 

The solution is more efficient if fewer countries contribute 

Another result is that the more efficient solutions, in which the aggregate contribution is larger, are those 

where fewer countries contribute. Specifically, if a country opts-out and no longer contributes, then the 

new Nash equilibrium is more efficient. This result is shown in the following theorem (see proof in 

Appendix C) and is demonstrated in Fig. 3. 

Theorem 2. Consider the N-players dynamic game in which each player adopts a Markovian strategy, 

𝑎𝑎𝑖𝑖(𝐺𝐺) ≥ 0 (𝑖𝑖 = 1,2, … ,𝑁𝑁), where the utility of player i, 𝒱𝒱𝑖𝑖 is given by Eq. 3 and the dynamics of 𝐺𝐺 are given 

by Eqs. 1, 2. Assume that ℎ is monotone increasing with 𝐴𝐴 (𝜕𝜕ℎ/𝜕𝜕𝜕𝜕 > 0) and is subject to diminishing 

returns (𝜕𝜕2ℎ/𝜕𝜕𝐴𝐴2 < 0). 

Consider two coexisting Markovian Nash equilibria, 1 and 2, and assume that 𝐺𝐺 approaches the same 

value in both. Assume that in a given state, 𝐺𝐺 = 𝐺𝐺0, the set of players contributing in equilibrium 2 is a 

subset of the set of players contributing in equilibrium 1 (a player “contributes” if 𝑎𝑎𝑖𝑖(𝐺𝐺0) > 0). It follows 

that, if 𝛿𝛿 is sufficiently small (𝛿𝛿 < 𝛿𝛿𝑐𝑐 for a certain 𝛿𝛿𝑐𝑐 > 0), then the aggregate contribution, 𝐴𝐴(𝐺𝐺0), in 

equilibrium 2 is greater than the aggregate contribution in equilibrium 1. 

End of Theorem 2 



8 
 

Note that the efficiencies of all the Nash equilibria depend critically on the diminishing returns [11]. In 

particular, without diminishing returns (ℎ is a linear function), the optimal solution dictates that 𝐺𝐺 

approaches 𝐺𝐺max as fast as possible (bang-bang strategy), whereas in Nash equilibrium, approaching 𝐺𝐺max 

may take a long time, because each country “waits” for the other countries to contribute (Fig. 3). But if 

the diminishing returns are higher, the optimal solution dictates lower values of 𝐴𝐴 and becomes more 

similar to the Nash equilibria. Consequently, the efficiency of the Nash equilibria increases with the 

diminishing returns (see also [11]). 

Discussion 

We showed that, in any Nash equilibrium, among the countries that contribute to the public project, those 

countries that gain the lower benefits are those that contribute more. The mechanism underlying this 

counterintuitive phenomenon is that, if a given country makes a large portion of the contribution to the 

project, this incentivizes that country to increase its contribution even further. Namely, there is a positive 

feedback between the contribution of a given country and its incentives to contribute (Figs. 4,6). To 

understand the mechanism underlying this feedback, consider a project that, sooner or later, is going to 

be completed by the countries. Then, the incentives of the countries to contribute further is due to their 

benefit from accelerating the project’s completion. If the contribution of a given country increases, the 

annual cost to that country increases, and therefore, its incentives to accelerate the progress increases. 

In other words, if the country already intends to contribute a significant amount, then increasing its 

present contribution would accelerate the increase in 𝐺𝐺 without significantly increasing the country’s net 

contribution. In contrast, if a country relies mostly on the contributions of other countries, increasing its 

present contribution would translate in full into a cost for that country. In turn, the disproportional 

contributions emerge because, in equilibrium, the marginal benefits of all the countries that contribute 

have to be the same, and due to the positive feedback mechanism, this could only happen if the countries 

that receive smaller benefits contribute more (Figs. 4A, 6A).  

Nevertheless, in stark contrast to our results, various previous studies have concluded that the 

contribution to public goods would increase with the country’s benefits from these goods [24-26]. One 

reason is that some previous studies considered models or scenarios that do not incorporate feedback 

between the state of the system and the strategy. For example, several authors asked how much each 

country invests in the short-term reduction of GHG emissions, where the benefits a country receives from 

its present investment do not necessarily depend on its portion of the future investments [13, 14, 30-32]. 
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Another reason is that most previous studies assumed that there are diminishing returns on the 

contribution of every single country [24-26]; namely, a country’s marginal cost of investment increases 

with the total investment of that country. (Note that in our model the diminishing returns are only on the 

aggregate contribution, 𝐴𝐴.) These diminishing returns per country’s investment may occur, for example, 

if a country can afford to invest a certain amount without much effect on its welfare, whereas investing 

larger amounts results in a larger marginal effect on its welfare  [33]. In turn, these diminishing returns 

imply that it is less beneficial for a given country to increase its contribution above some level; 

consequently, they may inhibit the effect of the positive feedback and necessitates investments by a larger 

number of countries. In contrast, the diminishing returns on the aggregate contribution that we did 

consider in the model do not have the same effect and do not inhibit the positive feedback mechanism. 

The diminishing returns on the aggregate investment may result from limitations on the project’s 

implementation that do not relate to the identity of the countries that contribute. For example, the 

eradication of harmful species is inherently constrained by biological factors that make it inefficient to 

eradicate too fast [11, 34]. In turn, the diminishing returns per country’s investment could be incorporated 

into our model by allowing more general forms of the response function, (e,g., ℎ(𝑎𝑎1,𝑎𝑎2) = 𝑎𝑎1
𝛾𝛾 + 𝑎𝑎2

𝛾𝛾 with 

𝛾𝛾 < 1), or a more general form of the cost due to the investment (e.g., 𝑎𝑎𝑖𝑖 → 𝑎𝑎𝑖𝑖 + 𝑎𝑎𝑖𝑖2 in Eq. 3). 

Incorporating sufficiently large diminishing returns into our model results in a Nash equilibrium in which, 

as in numerous previous studies [24-26], the contributions increase with the benefits (Fig. 4C).  

We also demonstrated the coexistence of multiple Nash equilibria, each of which comprises a different 

set of countries that contribute, or different times at which the different countries contribute (Figs. 2, 3). 

The multiple Nash equilibria already appear in each time step (Fig. 2), and consequently, in the dynamic 

game, even more Nash equilibria are possible as the identities of the countries that contribute may change 

over time (Fig. 3). Note that the existence of multiple Nash equilibria in dynamic games is a well-known 

phenomenon, but the underlying mechanism that is more common in the literature is that punishments 

can be used by the agents to enforce different sets of strategies (e.g., the folk theorems) [13, 26, 32]. In 

our model, however, we do not consider punishment mechanisms as we consider Markovian Nash 

equilibria, in which the actions of the agents at a given time do not depend on their prior actions. Instead, 

the mechanism underlying the emergence of multiple Nash equilibria in our model is the positive 

feedback, in which the more a given country contributes, the more it is incentivized to contribute even 

further.   
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When establishing a common project, the countries could agree to contribute according to any of the 

Nash equilibria. Specifically, such an agreement would be self-enforcing as no country would have the 

incentive to deviate [13-16, 30-32]. However, it is unclear which of the Nash equilibria should be 

preferred. Specifically, even the simplest case in which the same countries contribute at all times exhibits 

cases in which no Nash equilibrium is Pareto-superior to any other Nash equilibrium, namely, switching 

from one Nash equilibrium to another is beneficial for some countries but deleterious for others (Figs. 2, 

3). This is because each Nash equilibrium comprises a different set of countries that contribute, and each 

country would prefer an equilibrium in which it does not contribute. Furthermore, we showed in Theorem 

2 that those Nash equilibria in which fewer countries contribute at any given time are the more efficient 

ones. Namely, the efficient solutions, in which the aggregate contributions are higher and the project 

becomes complete faster, are also the less fair solutions. This tradeoff between efficiency and fairness 

makes it even harder to form an efficient, self-enforcing agreement. Nevertheless, the iterative solutions, 

in which the identities of the countries that contribute change over time, may suggest a solution to the 

conflict between efficiency and fairness. Specifically, these iterative solutions can be more efficient if 

fewer countries contribute at any given time, and can be fair if various countries contribute, each during 

a distinct time period. 
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Figure 1: Illustration of the model in a special case of climate change mitigation. The state of the 

technology used worldwide, 𝐺𝐺(𝑡𝑡), determines the amount of greenhouse gases (GHG; e.g., 𝐶𝐶𝑂𝑂2) emitted 

to the atmosphere. In turn, GHG causes the temperature to increase over time, and the higher 

temperatures may cause damages in all the countries. Each country may decide how much to invest in 

the development and establishment of greener technologies, 𝑎𝑎𝑖𝑖, which increase 𝐺𝐺 and result in a benefit 

to all the countries due to lower future GHG emmissions. 
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Figure 2: There exist multiple Nash equilibria, all of which exhibit contributions that are not monotone 

with the incentives of the countries. Each panel shows a Nash equilibrium, where the bars show the 

contribution of the countries to the common project at a given state, 𝑎𝑎𝑖𝑖(𝐺𝐺0). In each panel, the countries 

are shown from those with the highest benefits from the common project (left) to those with the lowest 

benefits from the project (right). In each Nash equilibrium, the contribution is made by several countries 

that gain sufficiently large benefits from the project, but in a reversed order in which the countries that 

have more benefits contribute less. Also note that the coexisting Nash equilibria differ in the identities of 

the countries that contribute. Specifically, panels A, B, and C each shows a distinct Nash equilibrium that 

correspond to a case where 𝑁𝑁 = 5 countries could potentially contribute, while panels D, E, and F each 

shows a distinct Nash equilibrium that corresponds to a case in which 𝑁𝑁 = 15 countries could contribute.  
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Figure 3: The Nash equilibria may differ in the timings at which different countries contribute. 

Demonstrated are three Nash equilibria that coexist in a given project. (A, B) In some Nash equilibria, the 

same countries contribute at all times. (C) In other Nash equilibria, the identities of the countries that 

contribute switch at certain times. The countries are ordered according to the benefits, from the most 

incentivized country (country 1) to the least incentivized one (country 5). Note that, at any given time, the 

less incentivized country among the contributing countries contribute more than the other countries. 

Also, note that the aggregate contribution is larger when fewer countries contribute.  
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Figure 4: Countries contribute amounts that are disproportional to their incentives. We consider two 

countries: country S with small benefits and country L with large benefits from the common 

environmental project. In each panel, we plot the optimal contribution of one country at a given state as 

a function of the contribution of the other country, (𝑎𝑎𝑆𝑆
opt- solid, blue line; 𝑎𝑎𝐿𝐿

opt- on flipped-axis - solid, red 

line). We also plot, as a reference, a mirror image of 𝑎𝑎𝐿𝐿
opt (dashed, blue-line), characterizing the optimal 

contribution of a hypothetical country that is identical to country L. Each intersection of the two solid lines 

corresponds to a Nash equilibrium that comprises a pair of contributions, one by country S and one by 

country L, in which no country has an incentive to unilaterally change its strategy. (The Nash equilibrium 

is given by the coordinates where the x-axis and y-axis show the contributions of country L and country S, 

respectively.) Similarly, each intersection of the dashed blue line and the solid red line corresponds to a 

Nash equilibrium of two identical countries with high incentives. The three panels differ in the parameter 

values. (A) There exists a Nash equilibrium in which both countries contribute (NE 2), but then, country S 

contributes more than country S. Note that country S contributes less for every given contribution of 

country L (the solid blue line is below the dashed blue line). But due to the positive feedback between the 

investment and the incentives to invest, the blue line is above the red line near the y-axis, and 

consequently, the Nash equilibrium dictates larger contribution of country S. (B) Country S has much lower 

incentives than country L, and it cannot stably contribute in Nash equilibrium. (C) We assume a different 

version of the model in which there are diminishing returns on the per-country investment, ℎ = ℎ(𝑎𝑎1,𝑎𝑎2). 

The red line is above the blue line near the y-axis, which implies that there exists a single Nash equilibrium, 

in which both countries contribute, and country L contributes more than country S. 
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Figure 5: The project is being established faster if fewer countries contribute (see Theorem 2). 

Demonstrated are several Nash equilibria, in each of which 𝑛𝑛 identical countries contribute 

simultaneously at all times until the project is complete (𝐺𝐺 = 𝐺𝐺max). Each Nash equilibrium is 

demonstrated as a function of 𝛿𝛿 for those values of 𝛿𝛿 for which it exists. (Note that each Nash equilibrium 

exists until 𝛿𝛿 approaches some threshold value, and this threshold value is lower if 𝑛𝑛 is smaller.) (A) 

Demonstrated are the total times that it takes to approach 𝐺𝐺max as a function of the discount rate for the 

four Nash equilibria in which 𝑛𝑛 = 1, 2, 4, and 8, as well as for the optimal solution that maximizes the total 

social welfare of all the 𝑁𝑁 = 8 countries. (B) Demonstrated are the total net costs, −𝒱𝒱�𝑖𝑖∗, which incorporate 

both 𝐶𝐶𝑖𝑖 and 𝑎𝑎𝑖𝑖  over time, as a function of 𝛿𝛿 for the same four Nash equilibria. Dotted lines show the costs 

per county that contributes, and solid lines show the average costs per country (including the countries 

that contribute and those that do not). The red line shows the Nash equilibrium in which no country 

contributes (and 𝐺𝐺 remains zero). Note that, in accordance with Theorem 2, for a sufficiently small 𝛿𝛿, the 

project is becomes complete faster and the average net cost is lower if 𝑛𝑛 is smaller. 
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Figure 6: The mathematical ideas behind the proof of Theorems 1 and 2 are demonstrated for the case 

of two players. The blue curve is a curve on which 𝑎𝑎1 + 𝑎𝑎2 is a constant. Specifically, it satisfies 𝑎𝑎1 + 𝑎𝑎2 =

𝑎𝑎1∗ + 𝑎𝑎2∗ , where (𝑎𝑎1∗,𝑎𝑎2∗) is a Nash equilibrium in which both countries contribute. (The Nash equilibrium 

resides on this curve.) Also, we denote 𝑤𝑤𝑖𝑖 = 𝜕𝜕𝒱𝒱𝑖𝑖/𝜕𝜕𝑎𝑎𝑖𝑖 (𝑖𝑖 = 1,2), characterizing the marginal benefit of 

country i from increasing its contribution (or the “incentives” of country i to increase its contribution). In 

turn, when moving leftward along the blue curve, 𝑤𝑤1 decreases while 𝑤𝑤2 increases. (This is due to the 

positive feedback mechanism that implies that each country becomes more incentivized if its relative 

contribution is larger.) This gives rise to the following two phenomena. (A) If player 1 has higher benefits 

from the public good, it follows that 𝑤𝑤1 > 𝑤𝑤2 if 𝑎𝑎1 = 𝑎𝑎2. In particular, 𝑤𝑤1 > 𝑤𝑤2 must hold at the middle 

point of the blue curve. In turn, in Nash equilibrium, 𝑤𝑤1 = 𝑤𝑤2 must hold. Since 𝑤𝑤1 decreases while 𝑤𝑤2 

increases when moving leftward along the blue curve, it follows that 𝑎𝑎2∗ > 𝑎𝑎1∗ must hold in a Nash 

equilibriun. (B) In the Nash equilibriun in which only one player contribute, (0,𝑎𝑎2∗∗), the aggregate 

contribution is grater than in the Nash equilibrium in which both players contribute, namely, 𝑎𝑎2∗∗ > 𝑎𝑎1∗ +

𝑎𝑎2∗ .  This is because, when moving leftward along the blue curve, 𝑤𝑤2 increases. Therefore, when 𝑎𝑎1 = 0 

and 𝑎𝑎2 = 𝑎𝑎1∗ + 𝑎𝑎2∗ , 𝑤𝑤2 > 0. In turn 𝑑𝑑𝑤𝑤2/𝑑𝑑𝑎𝑎2 < 0 if 𝑤𝑤2 > 0. Also, in Nash equilibrium, 𝑤𝑤2 = 0. Therefore, 

𝑎𝑎2∗∗ > 𝑎𝑎1∗ + 𝑎𝑎2∗ . 
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Supplementary Figure S1: Our algorithm goes along the optimal manifolds to find the Nash equilibrium 

in which a given set of countries contribute. The algorithm is demonstrated here for 2 countries. 𝑎𝑎2
opt is 

the optimal strategy of country 2 as a function of 𝑎𝑎1, while 𝑎𝑎1
opt is the optimal strategy of country 1 as a 

function of 𝑎𝑎2 (plotted on a flipped-axis; see also Fig. 4). The algorithm starts from assigning low values to 

𝑎𝑎1 and 𝑎𝑎2. Then, the algorithm increases the values 𝑎𝑎1 and 𝑎𝑎2 until it approaches one of the optimal 

curves. Finally, it continues along that curve until it approaches the other curve, where the Nash 

equilibrium is found. 
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Appendix A: Reduction of the dynamic game to a series of static

games

In this appendix, we analyze the solution to the dynamic game described in the main text and we

show that, at each state of the system, the solution is also given by a solution to an equivalent

static game. The key idea is that the state of the system, G, increases monotonically over time

until it approaches its asymptotic state, G = G∗max. Therefore, if the present state of the system

is G0 < G∗max, then either the system remains at G = G0 forever, or the next state of the system

is G0 + dG (namely, the system remains between G0 and G0 + dG until it approaches G0 + dG).

Consequently, when the system is at state G0, the optimization problem of player i is how to

approach the state G0 + dG in the optimal fashion where the strategies of the other players at

G = G0 are given. These considerations give rise to Lemma 1, which we prove in two different

ways. The first proof reflects directly the logic of the backward-induction process described here.

The second proof is shorter and makes a use of the Hamilton-Jacobi-Bellman equation.

Before we state the lemma, note that adding a constant to the utility functions does not change the

Nash equilibria. Therefore, instead of the utility function Vi, we may consider the following utility

function:

V̂i(a, G0) = −
∫ ∞
0

(Ci(G) + ai(G)) e−δtdt (S1)

with G = G0 when t = 0, where

Ci(G) = B(G∗max)−Bi(G). (S2)

Specifically, note that B(G∗max) is a constant, and therefore, the game in which the utilities are

given by V̂i is equivalent to the game where utilities are given by V̂i. Moreover, note that Ci has

the intuitive interpretation as it is the cost due to the the fact that the state G is still lower than

G∗max. Also, note that the integrand of V̂i approaches zero as t→∞.
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Lemma 1. Consider the N -players dynamic game in which each player adopts a Markovian strat-

egy, where the utility of player i, Vi, is given by Eq. 3 (main text), and the dynamics of G are given

by Eqs. 1, 2 (main text). Assume that h is positive and monotone increasing with A. Consider a

Markovian Nash equilibrium of this game, a∗. Denote a∗(G0) = (a∗1(G0), a
∗
2(G0), ..., a

∗
m(G0)) as

the equilibrium strategies where G = G0, and denote G∗max as the asymptotic value of G following

the equilibrium a∗ (G→ G∗max as t→∞).

It follows that, for any G0 ≤ G∗max, a∗(G0) is also a Nash equilibrium of the static game in which

the utilities are given by

ui = −Ci(G0) + ai(G0) + δV̂∗i (G0)

h(A(G0), G0)
, (S3)

where Ci is given by Eq. (S2), A(G0) =
∑

i ai(G0), and V̂∗i (G0) = V̂i(a∗, G0). More generally, if

h(A,G0) is not positive for all A, then ui is given by Eq. (S3) if h(A) > 0 and approaches minus

infinity otherwise.

Furthermore, denote a∗(δ) as a set of Nash equilibria, each of which corresponds to a different

value of δ > 0, and denote V̂∗i (G0, δ) as V̂i(G0) where a = a∗(δ). It follows that

lim
δ→0

δV̂∗i (G0, δ) = 0. (S4)

In particular, if δ = 0, a∗(G0) is also a Nash equilibrium of the static game

ui = −Ci(G0) + ai(G0)

h(G0, A)
. (S5)

Proof of Lemma 1 using a backward induction approach.

First part. The assumption that G0 < G∗max, together with the assumption that the strategies are

Markovian (ai depends only on G), imply that, in equilibrium, G increases monotonically until it

approaches G∗max. Therefore, when we consider the solution at a given state, G0 < G∗max, we may

restrict attention to cases where G increases, i.e., h(A) > 0. Namely, even if h(A) ≤ 0 for some

values of A, the assumption that G0 < G∗max implies that, in equilibrium, h(A) > 0. Furthermore,
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since G increases monotonically, we may consider a backward induction approach in which the

players need to chose a strategy at a given state G0, where the equilibrium utilities of the players

at the next state, G0 + dG, are known and are given by V̂∗i (G0 + dG). Specifically, since we

consider G as a continuous variable, we consider dG as infinitesimally small. (Note that a similar

derivation would apply if G is discrete each player is committed to use a given strategy between G

and G+ ∆G).

Specifically, the strategies of the players between G0 and G0 + dG determine the time that it takes

to the system to approach G0 + dG, which we denote as ∆t. In turn, it follows that the utilities at

state G = G0, given that a = a∗ if G ≥ G0 + dG, are given by

V̂i(G0) = −(Ci(G0) + ai(G0))∆t+ V̂∗i (G0 + dG) exp(−δ∆t). (S6)

Namely, the strategy ai(G0) of player i affects her/his utility in two different ways. First, the player

suffers a cost Ci(G0) + ai(G0) during a period ∆t (where both the cost and the ∆t depend on the

strategy of the player). Second, the system approaches the state G0 + dG only after a delay, ∆t,

and therefore, a greater ∆t implies a greater discount on the utility at the next state of the system.

In particular, note that Eq. 2 implies that

∆t = dG/h(A), (S7)

where h(A) = h(A(G0), G0). Substitution of Eq. (S6) into Eq. (S7) implies

V̂i(G0) = −Ci(G0) + ai(G0)

h(A)
dG+ V̂∗i (G0 + dG) exp

(
− δ

h(A)
dG

)
. (S8)

In turn, note that dG is infinitesimally small, and we can write Eq. (S8) as

V̂i = V̂∗i (G0 + dG)− Ci(G0) + ai(G0) + δV̂∗i (G0)

h(A)
dG+O(dG2) (S9)

Finally, note that V̂∗i (G + dG) is a constant that does not depend on the strategies of the players

at G = G0. It follows that the equilibrium strategies at G = G0 must also be the equilibrium

strategies of the static game in which the utilities are given by the second term in the right hand
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side of Eq. (S9). In other words, the utilities are given by Eq. (S3), which complete the proof of

the first part of the lemma.

Second part. To show that δV̂∗i (G0, δ) → 0 as δ → 0, we need to show that, for each ε, there

exists δc such that δV̂∗i < ε for all δ < δc. First, note that (Ci + a∗i ) → 0 as t → ∞, as follows

directly from the definition of Ci. In particular, this implies that there exists t1 < ∞, such that

Ci + a∗i < ε/2 for all t > t1. In turn, this implies that

V a
i ≡

∫ ∞
t1

(Ci + a∗i )e
−δtdt <

1

2

ε

δ
.

Also, note that

V b
i =

∫ t1

0

(Ci + a∗i )e
−δtdt ≤ max{C1 + a∗1}t1,

and therefore, if

δc ≡
1

2

ε

max{C1 + a∗1}t1
,

then V b
i <

1
2
ε
δ

for all δ < δc. In turn, V̂∗i = V a
i + V b

i , and therefore, V̂∗i < ε/δ (or δV̂∗i < ε) for all

δ < δc, which completes the proof of Lemma 1. �

Alternative proof of the first part of Lemma 1 using the Hamilton-Jacobi-Bellman equation.

In Nash equilibrium, each player adopts a strategy that maximizes his/her strategy given the strat-

egy of the other players, and therefore, V̂∗i must satisfy the Hamilton-Jacobi-Bellman equation [26,

28]. Specifically, from Eqs. 1-3, it follows that the Hamilton-Jacobi-Bellman equation is given by

−∂V̂
∗
i

∂t
= h(A(G), G)

∂V̂∗i
∂G
− δV̂i(G)− Ci(G)− a∗i (G), (S10)

where this equation applies to both V∗i and the equivalent V̂∗i (Eq. (S1)). Next, note that the game is

time-invariant as both the strategies and the utilities do not depend explicitly on time. This follows

directly from the fact that, for all t1 and t2, V̂i(G0, t1) = V̂i(G0, t2), which, in turn, follows directly

from Eq. (S1) together with the assumption that the strategies are Markovian and depend only on
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the state G. It follows that ∂V̂∗i /∂t = 0 and therefore, it follows from Eq (S10) that

∂V̂∗i (G)

∂G
=
Ci(G) + ai + δV̂∗i (G)

h(A(G), G)
. (S11)

In turn, it follows from the definition of V̂i that V̂∗i (G∗max) = 0. Therefore, for all G < G∗max,

the strategy ai that maximizes V̂i(G) is also the strategy that minimizes ∂V̂∗i (G)/∂G (where the

strategies of the other players are given). Namely, in Nash equilibrium, each player choses a

strategy that minimizes the right-hand-side of Eq. (S11), which is also the strategy that maximizes

ui (Eq. (S3)), which completes the proof of the first part of Lemma 1. �
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Appendix B: Proof of Theorem 1

In this Appendix, we prove Theorem 1. We begin with Lemma 2, which is used to prove both Part

A and Part B of the theorem. Then, we present Lemma 3, which is used for the proof of Part B.

We also use Lemma 1 from Appendix A for the proof.

Lemma 2 Consider the two-players static game in which each player i, i = 1, 2, adopts a strategy

ai ≥ 0 and has a utility given by

ui = − Ci + ai
h(F + a1 + a2)

, (S12)

where h(x) > 0 and h′(x) ≥ 0 for all x > 0.

Consider that a Nash equilibrium of the game is given by (a∗1, a
∗
2). If the equilibrium strategies of

both players are strictly positive, a∗1 > 0 and a∗2 > 0, it follows that

a∗1 + C1 = a∗2 + C2. (S13)

Specifically, note that Eq. (S13) implies that a∗2 > a∗1 if and only if C1 > C2, and it also implies

that

u1(a
∗
1, a
∗
2) = u2(a

∗
1, a
∗
2) (S14)

Proof of Lemma 2 Since ai ∈ [0,∞), and since a∗i > 0 in Nash equilibrium (in which each

player adopts a strictly positive strategy that maximizes her/his utility when the strategy of the

other player is given), it follows that

∂ui(a
∗
1, a
∗
2)

∂ai
= 0. (S15)

In turn, from Eq. (S12), it follows that

∂ui
∂ai

= −h(A)− (Ci + ai)h
′(A)

h2(A)
, (S16)
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where A = F + a1 + a2. Substitution of Eq. (S16) into Eq. (S15) implies that

h(A∗)− (Ci + a∗i )h
′(A∗) = 0 (S17)

or

Ci + a∗i =
h(A∗)

h′(A∗)
, (S18)

where A∗ = F + a∗1 + a∗2. Specifically, note that Eq. (S18) applies to both i = 1 and i = 2, and

therefore,

C1 + a∗1 = C2 + a∗2, (S19)

which completes the proof of Lemma 2. �

Lemma 3 Consider the N -players dynamic game in which each player adopts a Markovian strat-

egy, ai(G) ≥ 0, the utility of player i, Vi, is given by Eq. 3, and the dynamics of G are given by

Eqs. 1, 2. Assume that h is non-negative and monotone increasing with A for all G. Consider a

Nash equilibrium, a∗. DenoteG∗max as the asymptotic state ofG, and denote as V̂∗i (G) as the value

of V̂i(a, G) (Eq. S1) where a = a∗.

It follows that, if a∗i (G) > 0 and a∗j(G) > 0 for all G0 < G < G∗max (both players contribute until

the project approaches its asymptotic level), then

V̂∗i (G) = V̂∗j (G) (S20)

for all G0 ≤ G ≤ G∗max.

Proof of Lemma 3. Note that the assumptions of Lemma 3 also satisfy the assumption of Lemmas

1 and 2. From Lemma 1, it follows that for all G0 ≤ G1 ≤ G∗max, the Nash equilibrium at the state

G = G1 is also a Nash equilibrium of the static game in which the utilities are given by

ui =
C̃i(G1) + ai(G1)

h(A(G1), G1)
, (S21)
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where

C̃i(G1) = Ci(G1) + δV̂∗i (G1). (S22)

Accordingly, Lemma 2 implies that if both a∗1(G1) > 0 and a∗2(G1) > 0, then

a∗1(G1) + C̃1(G1) = a∗2(G1) + C̃2(G1). (S23)

In turn, note that if V̂∗i (G1) = V̂∗j (G1), then a∗1(G1) + C̃1(G1) = a∗2(G1) + C̃2(G1) implies that

a∗1(G1) + C1(G1) = a∗2(G1) + C2(G1). Also, note that V̂∗i (G∗max) = V̂∗j (G∗max), and therefore,

if a∗1(G) + C1(G) = a∗2(G) + C2(G) for all G1 < G < G∗max, it follows from Eq. (S1) that

V̂∗i (G1) = V̂∗j (G1) Therefore, it follows from backward induction that V̂∗i (G1) = V̂∗j (G1) for all

G0 < G1 < G∗max, which completes the proof of Lemma 3. �.

Proof of Theorem 1. According to Lemma 1, we only need to show that the theorem holds for the

static game in which the utilities are given by

ui = −C̃i + ai
h(A)

(S24)

if h(A) > 0 and ui approaches minus infinity otherwise, where

C̃i = Ci(G0)− δV̂∗i (G0), (S25)

and h(A) = h(A(G0), G0). In turn, from Lemma 2, it follows that, for all i and j, if both a∗i and

a∗j are strictly positive and C̃i > C̃j , then a∗j > a∗i (Eq. (S24) is a special case of Eq. (S12) where

F = A− ai − aj).

To complete the proof of the theorem, it remains to show that, under the conditions specified in

part A and part B, Ci < Cj implies that C̃i < C̃j . Specifically, note that Lemma 1 also implies that

lim
δ→0

δV̂∗i = 0.

Therefore, for sufficiently small δ, C̃i < C̃j if Ci < Cj , which completes the proof of part A. In

turn, note that according to Lemma 3, if both players i and j contribute at all times untilG = G∗max,

then V̂∗i = V̂∗j . This implies that C̃i > C̃j if and only if Ci > Cj , which completes the proof of part

B of the theorem. �
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Appendix C: Proof of Theorem 2

In this Appendix, we prove Theorem 2. We begin with proving two lemmas and we also use

Lemma 1 from Appendix A for the proof. Fig. 6B demonstrates a graphical illustration of the

proofs of Lemmas 4 and 5.

Lemma 4. Consider the optimization problem in which a single player needs to chose a ≥ 0 that

maximizes u(F, a) where F is given. Denote

w(a, F ) =
∂u(a, F )

∂a
(S26)

and assume that the following two conditions hold for all a and F :

(1) w increases if a increases while the sum a + F remains unchanged. Namely, if a1 + F1 =

a2 + F2 and a1 > a2, then w(a1, F1) > w2(a2, F2).

(2) If w(a, F ) > 0, then
∂w(a, F )

∂a
< 0.

Denote a∗(F ) the value of a that maximizes u(a, F ) for a given value of F . It follows that, if

a∗ > 0, then the value of the sum (a∗(F ) + F ) increases as F decreases.

Proof of Lemma 4. Assume that a∗1 > 0 maximizes u1(a) = u(a, F1), and a∗2 > 0 maximizes

u2 = u(a, F2), where F2 < F1. It follows that

w1 =
du1(a

∗
1)

da
= 0, (S27)

w2 =
du2(a

∗
2)

da
= 0. (S28)

Also, consider a02 > 0 that satisfies

F2 + a02 = F1 + a∗1. (S29)

The assumption that F2 < F1 implies that a02 > a∗1. Therefore, it follows from condition (1) that

w2(a
0
2) > w1(a

∗
1), (S30)
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and since w1(a
∗
1) = 0, it follows that

w2(a
0
2) > 0. (S31)

In turn, it follows from condition (2) that w2(a) > 0 for all 0 ≤ a ≤ a0. Therefore, w(a2) = 0

implies that a∗2 > a02. Then, Eq. (S29) implies that

F2 + a∗2 > F1 + a∗1. (S32)

Finally, note that Eq. (S32) holds for all F1 and F2 that satisfy F2 < F1, which completes the proof

of Lemma 4. �

Lemma 5. Consider an N -players static game in which each player, i = 1, 2, ..., N , chooses a

strategy ai ≥ 0 and has a utility function given by ui. Denote A as the aggregate contribution,

A =
∑
i

ai (S33)

and

wi =
∂ui
∂ai

. (S34)

Assume that the utility satisfies the following two conditions for all sets of strategies, {a1, a2, ..., aN},

and for all i:

(1) wi increases if the contributions change such that ai increases while A remains unchanged.

(2) If wi > 0, then
∂wi
∂ai

< 0.

Also, assume that the following two Nash equilibria exist: equilibrium 1, in which ai > 0 if and

only if i = 1, 2, ..., n, and equilibrium 2, in which ai > 0 if and only if i = 2, 3, ..., n (and a1 = 0).

Then, it follows that A is greater in equilibrium 2.

Proof of Lemma 5. Denote A∗1 and A∗2 the aggregate contributions in equilibria 1 and 2, re-

spectively. Denote a∗1i the strategy of player i in equilibrium 1 and a∗2i the strategy of player i in

equilibrium 2. Also, denote A∗1−i = A∗1 − a∗1i and A∗2−i = A∗2 − a∗2i .
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Assume that, in contrast to the lemma, A∗2 ≤ A∗1. It follows that there exists i such that

A∗2−i < A∗1−i. (S35)

In turn, from Lemma 3 (where ai plays the role of a and A∗1−i plays the role of F ), it follows that

A∗2−i + a∗2i > A∗1−i + a∗1i , (S36)

which is equivalent to A∗2 > A∗1, and we reached a contradiction. This implies that A∗2 > A∗1

must hold, which completes the proof of Lemma 5. �

Proof of Theorem 2. According to Lemma 1, the results of Theorem 2 hold if they hold for the

static game in which the utilities are given by

ui = −C̃i(G0) + ai(G0)

h(G0, A)
, (S37)

where

C̃i = Ci(G0) + δV̂∗i .

We begin with a proof for the non-discounted case (δ = 0), and then, we extend the proof to the

more general case.

Non-discounted case

According to Lemma 1, δV̂∗i → 0 as δ → 0, and therefore, in the non-discounted case, C̃i =

Ci(G0). Moreover, note that Ci(G0) has the same value in both equilibria, which follows directly

from the assumption that G∗max is the same in both. Therefore, both equilibria are equilibria of the

same static game where G = G0, and therefore, the results of the theorem follow from the results

of Lemma 5. It remains to show that conditions (1) and (2) of Lemma 5 hold for all ui and all ai.

It follows from Eq. (S37) that

∂ui
∂ai

= −h(A)− (Ci + ai)h
′(A)

h2(A)
= −h(A)− Cih′(A)

h2(A)
+ ai

h′(A)

h2(A)
. (S38)
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Condition (1) follows directly from Eq. (S38) because h′(A) > 0 and h2(A) > 0, and therefore,

∂ui/∂ai increases if the strategies change such that ai increases while A remains unchanged.

Next, note that

∂2ui
∂a2i

=
aih
′′h2 + 2hh′(h− (Ci + a)h′)

h4
, (S39)

where we use h to denote h(A). In turn, note that aih′′h2 ≤ 0 follows from the assumptions that

ai > 0, h > 0, and h′′ ≤ 0. In turn, note that ∂ui/∂ai > 0 implies that (h − (Ci + ai)h
′) < 0.

It follows that, if ∂ui/∂ai > 0, then the numerator is negative while the denominator is positive,

which implies that ∂2ui/∂a2i < 0. Namely, condition (2) of Lemma 5 also holds.

Discounted case

Denote K the set of players that contribute in a given Nash equilibrium: a∗i > 0 if i ∈ K and

a∗i = 0 otherwise. From Eq. (S38), it follows that for each i ∈ K,

C̃i =
h(A∗)

h′(A∗)
− a∗i . (S40)

(Note that V̂∗i ≤ 0 does not depend to ai(G0).) In turn, the assumption that h′′ < 0 implies that

d

dai

(
h(A)

h′(A)
− ai

)
=
h′2(A)− h(A)h′′(A)

h′2(A)
− 1 = −h(A)h′′(A)

h′2(A)
> 0. (S41)

Namely, h(A∗)/h′(A∗) − a∗i increases with a∗i , which implies that the solution to Eq. (S40) is

unique. In turn, this implies that the Nash equilibrium in which the set of players that contribute

is given by K is unique. Moreover, it implies that for each i ∈ K, a∗i changes continuously

with δ, and the existence of that Nash equilibrium for a given δ = δ
′ implies its existence for all

0 < δ < δ
′ .

Denote A∗1(δ) and A∗2(δ) the values of A∗1 and A∗2, respectively, for a given value of δ. Specifi-

cally, we have seen in the proof for the non-discounted case that A∗2(0) > A∗1(0), and therefore,

∆ ≡ A∗2(0) − A∗1(0) > 0. Also, since a∗i changes continuously with δ, A∗1(δ) and A∗2(δ) are

continuous functions of δ. Specifically, A∗1(δ)→ A∗1(0) and A∗2(δ)→ A∗2(0) as δ → 0. There-
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fore, there exists δc such that (A∗2(δ)− A∗2(0)− (A∗1(δ)− A∗1(0))) < ∆ for all δ < δc. This

implies that A∗1(δ) < A∗2(δ) for all δ < δc, which completes the proof of Theorem 2. �
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Appendix D: Existence of cooperative Nash equilibria

In Appendices A-C, we discuss the properties of Nash equilibria in which several players contribute

simultaneously. In this Appendix, we analyze which of these Nash equilibria may coexist and how

it depends on the parameters. In particular, we consider a set of players, K, and we examine the

conditions for the existence of a Nash equilibrium in which only these players contribute at a given

stateG. For example,K = {2, 3, 5} implies that only players 2, 3 and 5 contribute, namely, a∗i > 0

if and only if i = 2, 3, 5 (and a∗i = 0 otherwise).

Role of the discount rate

The existence of a given Nash equilibrium in which only players in K contribute depends on the

discount rate, δ, as demonstrated in Fig. 5. In particular, if δ is sufficiently small, then it worth for

a single agent to contribute even if no other agent contributes. However, if δ is greater than some

threshold, then the solution in which no agent contributes becomes stable and a contribution by a

single agent is no longer a Nash equilibrium (see also [11, 19]). Similarly, as δ further increases,

fewer Nash equilibria exist and those that still exist include more countries that contribute simulta-

neously. To obtain some analytic insights, consider the simple case in which h does not depend on

G, h(0) = 0, h′(x) > 0, and h′′(x) < 0 for all x. Also, assume that players are identical, and the

benefits are given by Bi(G) = βG if G < Gmax and Bi = βGmax otherwise. In this case, a Nash

equilibrium in which only one agent contributes for all G < Gmax exists if and only if δ < βh′(0).

More generally, a necessary condition for the existence of any Nash equilibrium in which K is not

empty is that δ is below a certain threshold, where the particular threshold depends on K.

Role of the relative costs: general case

In the rest of this Appendix, we restrict attention to the case in which δ is sufficiently small, and

we examine how the heterogeneity among the players determine which Nash equilibria exist. We

restrict attention to a given state of the system, G0 < G∗max. For simplicity, we omit the notation
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G0 from all the functions and we use the notation Ci for C̃i(G0), h(A) for h(A(G0), G0), ai for

ai(G0), and A∗ for the aggregate contribution, A, where G = G0 in a given Nash equilibrium.

We have seen in the proof of Lemma 2 that, in Nash equilibrium, a∗i satisfies

Ci + a∗i =
h(A∗)

h′(A∗)
(S42)

for all i ∈ K (and a∗i = 0 for all i 6∈ K). (Note that Eq. (S42) is an implicit formula as a∗i appears

in both sides of the equation as it is also a component of A∗.) In turn, this implies three necessary

conditions for the existence of a Nash equilibrium in which only agents in K contribute:

(1) For all i ∈ K, the solution in Eq. (S42) maximizes the utility (we only saw that ∂ui/∂ai = 0

if and only if Eq. (S42) holds, but we still did not examine the second derivative) .

(2) For all i ∈ K, there exists a solution to Eq. (S42) in which a∗i > 0.

(3) For all i 6∈ K, ai = 0 maximizes ui.

Note that conditions (2) and (3) are demonstrated in Fig. 4A,B for the case of two players. In

particular, Fig. 4A shows a case in which the costsCi are sufficiently close, and a Nash equilibrium

in which both players contribute exists. Fig. 4B shows a case in which the difference between the

costs is larger, and only the player with the larger Ci may contribute in a Nash equilibrium. In what

follows, we derive general necessary conditions for conditions (1)-(3).

condition (1)

A sufficient condition for condition (1) is that

∂2ui(a
∗)

∂a2i
< 0. (S43)

In turn, it follows from Eq. (S3) that

∂2ui(a
∗)

∂a2i
= − [h′(A∗)− h′(A∗)− a∗ih′′(A∗)]h2(A∗)− 2h(A∗)h′(A∗)[h(A∗)− (Ci + a∗i )h

′(A∗)]

h4(A∗)

=
a∗ih

′′(A∗)h2(A∗) + 2h2(A∗)h′(A∗)− 2h(A∗)h′2(A∗)(Ci + a∗i )

h4(A∗)
. (S44)
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After the substitution of Ci − a∗i = h(A∗)/h′(A∗) (Eq. (S42)), Eq. (S44) becomes

∂2ui(a
∗)

∂a2i
=
a∗ih

′′(A∗)

h2(A∗)
. (S45)

Therefore, a sufficient condition for condition (1) is that h′′(A∗) < 0. Further analysis is needed if

h′′(A∗) = 0.

condition (2)

To further examine conditions (2) and (3), we assume that h′′(x) < 0 for all x, and we examine

which other assumptions are necessary in that case. In particular, h′′ < 0 implies that

d

dai

(
h(A)

h′(A)
− ai

)
=
h′2(A)− h(A)h′′(A)

h′2(A)
− 1 = −h(A)h′′(A)

h′2(A)
> 0. (S46)

Namely, h(A)/h′(A) − ai increases with ai. This implies that the Nash equilibrium, if exists, in

unique. Also, it follows from Eq. (S42) that a necessary condition for condition (2) is that, for all

i ∈ K,

Ci >
h(A∗−i)

h′(A∗−i)
, (S47)

where A∗−i = A∗ − a∗i . In particular, note that h(x) increases with x and h′(x) decreases with

x (since we assume that h′′(x) < 0), and therefore, h(x)/h′(x) increases with x. Consequently,

Eq. (S47) implies that Ci must be sufficiently large and/or the contribution of the other players in

equilibrium must be sufficiently small.

condition (3)

The analysis of condition (2) also shows that, in the case where h′′ < 0, condition (3) holds if and

only if

Ci ≤
h(A−i)

h′(A−i)
, (S48)

for all i 6∈ K. In particular, if i 6∈ K, then a∗i = 0 and A∗−i = A∗. Also, it is sufficient that the

condition holds for the player with the largest Ci among the players that do not contribute. Denote

Cm = max
i 6∈K
{Ci}. (S49)
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Then, a necessary condition to condition (3) is that

Cm ≤
h(A∗)

h′(A∗)
(S50)

Equivalently, for a given i ∈ K, if follows from Eq. () that condition (3) holds if and only if

a∗i ≥ Cm − Ci (S51)

In conclusion, a unique Nash equilibrium in which a given set of players contribute exists if the

discount rate, δ, is sufficiently small, there are diminishing returns on investment, h′′ < 0, and the

cost (Ci) of the players that contribute is sufficiently large compared to the players with the largest

costs (Eqs. (S47,S50)).

Role of the relative costs: no diminishing returns

To gain a better insight, we analyze here the special case in which there are no diminishing returns,

namely, h(A) is linear and is given by

h(A) = αA, (S52)

where α is a constant. In this special case, h′′ = 0, and therefore, Eq. (S43) is not satisfied.

However, as we will see, there still exist cooperative Nash equilibria in which the players are

indifferent between keeping their contribution and deviating from it. The analysis of these Nash

equilibria is meaningful because, with the presence of some small diminishing returns, h′′ . 0,

these Nash equilibria become more stable in the sense that the players are worse off deviating. In

turn, the linear case (Eq. (S52)) is easier to analyze and enables us to gain some analytic insights.

Substitution of Eq. (S52) into Eq. (S3) implies

ui = −Ci + ai
αA

. (S53)

Note that the strategies do not change if the utilities are multiplied by a constant, and therefore, the

equilibrium strategies do not depend on α and we can set α = 1 without loss of generality.
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Consider a Nash equilibrium in which the set of players that contribute is given by K (a∗i > 0 if

i ∈ K and a∗i = 0 otherwise). Specifically, where h(A) = αA, Eq. (S42) becomes

Ci + a∗i = A (S54)

if i ∈ K. Namely, for all i ∈ K,

Ci =
∑
j 6=i

aj. (S55)

Specifically, this defines a set of n linear equations where n is the number of players that contribute

(n = |K|). This set of equation can be written in the matrix form

C̄ = M ā, (S56)

where C̄ is the vertical vector of all the costs (Ci) of the players that contribute (i ∈ K), ā is the

vertical vector of the strategies (ai) of these players, and M is the n× n matrix given by

M = 1− I, (S57)

where 1 is the n×n matrix in which all the elements equal 1 and I is the n×n identity matrix. In

turn, note that M is a regular matrix if n ≥ 2, and therefore, the inverse matrix, M−1, exists, and

ā = M−1C̄. (S58)

In particular, note that

M−1 =
1

n− 1
1− I. (S59)

It follows that

ai =
1

n− 1
〈C〉K − Ci, (S60)

where 〈C〉K is the average value of all the costs (Ci) of the countries that contribute.

Finally, we need to find the conditions under which the solution given by Eq. S60 is a valid Nash

equilibrium. Namely, we need to show that conditions (1), (2) and (3) hold. From Eq. (S44), if
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follows that if aj = a∗j for all j 6= i, then ui(ai) does not depend on ai, and therefore, condition (1)

holds (although in its marginal form).

In turn, condition (2) states that ai ≥ 0 for all i ∈ K, which implies that

Ci ≤
n

n− 1
〈C〉K (S61)

for all the countries that contribute. In turn, condition (3) implies that

Cj ≤ A (S62)

for all the countries that do not contribute. However, Eq. S60 implies that

A =
n

n− 1
〈C〉K , (S63)

and therefore, Eq. S61 coincides with Eq. S62 (conditions (2) and (3) coincide), where the con-

dition must hold for all i, regardless of whether country i contributes. Therefore, a necessary and

sufficient condition that the solution in Eq. S60 is valid is that

C1 ≤
n

n− 1
〈C〉K , (S64)

where C1 is the largest cost, regardless of whether country 1 participates or not. Note that 〈C〉K is

the average cost among the participating countries only, and therefore, the condition implies that

the average cost has to be sufficiently close to the largest cost.
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Appendix E: Numerical methods

To calculate the Markovian Nash equilibrium for all G, we used a standard backward induction

approach, in which a static game is solved in each time step. Specifically, sinceG can only increase

over time, we could simplify the algorithm further by repeatedly solving the problem of how to

move from some G0 −∆ to G0, starting with G0 = Gmax, where ∆ defines the resolution and can

be chosen to be arbitrarily small. Specifically, that utilities of each static games are given by Eq.

S3, as shown in Lemma 1, Appendix A. Therefore, the challenge is to find, for a given set of n

countries, whether a Nash equilibrium exists in which these are the countries that contribute, and,

if yes, to find that Nash equilibrium.

One method to find and analyze the Nash equilibrium graphically for 2 countries is to calculate, for

every given contribution by country 2, the optimal contribution by country 1, aopt1 (a2). Similarly,

we calculate the function aopt2 (a1). Then, plotting aopt1 (a2) and plotting aopt1 (a2) on a flipped axis

(Fig. 4) provides a graphical way to find and to analyze the Nash equilibria (Fig. 4). Specifically,

a Nash equilibrium appears at each intersection of these two lines. However, when N ≥ 3, this

method becomes harder to visualize. Specifically, each of the functions ai(aj 6=i) define an (N−1)-

dimensional manifold in an N -dimensional space. Another difficulty arises as there are multiple

Nash equilibria, and general algorithms for finding a Nash equilibrium may fall on any of these.

Therefore, we developed an algorithm that goes along the (n − 1)-dimensional manifolds until

it converges at the Nash equilibrium in which a given set of n countries contribute, or until the

algorithm indicates that no such Nash equilibrium exists (Fig. S1). Specifically, the algorithm

starts with assigning a small contribution to each country. Then, at each time step, the algorithm

checks for each country, i, whether increasing ai by ε increases Vi. If the answer is yes, ai is

increased by ε (ai → ai + ε). If the answer is no, aj is decreased by 2ε for all the other countries

(aj → aj − 2ε for all j 6= i). Fig. S1 demonstrates how this algorithm goes through the optimal

manifolds until it approaches the Nash equilibrium. In turn, if at some point, for any i, ai ≤ 0, this
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indicates that there is no solution where all the n countries contribute. Otherwise, the algorithm

terminates at a candidate Nash equilibrium. It only remains to verify that, for the remaining N −n

countries, aj = 0 is the optimal strategy (and it is sufficient to verify that for the country with the

largest benefits). Simulating this algorithm repeatedly with different subsets of countries enables

us to find the various Nash equilibria (Figs. 2, 3).
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